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Identification of domain walls in coarsening systems at finite temperature

Haye Hinrichsen and Mickae¨l Antoni
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 24 October 1997!

Recently B. Derrida@Phys. Rev. E55, 3705 ~1997!# introduced a numerical technique that allows one to
measure the fraction of persistent spins in a coarsening nonequilibrium system at finite temperature. In the
present work we extend this method in a way that domain walls can be clearly identified. To this end we
consider three replicas instead of two. As an application we measure the surface area of coarsening domains in
the two-dimensional Ising model at finite temperature. We also discuss the question of to what extent the
results depend on the algorithmic implementation.@S1063-651X~98!06403-4#

PACS number~s!: 05.50.1q, 75.10.2b, 75.60.Ch, 05.70.Ln
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I. INTRODUCTION

Dynamical systems quenched from a disordered into
ordered phase may display interesting coarsening phen
ena @1#. A simple example is the Ising model evolving b
heat bath~HBD! or Glauber dynamics~GD!. In the ordering
phase of this model, starting with random initial condition
patterns of ferromagnetic domains are formed whose typ
size grows with time ast1/2. For zero temperature, these d
mains are fully ordered and the domain walls evolving
time can be identified as bonds between oppositely orien
spins @2#. For nonzero temperature, however, it is hard
define domains and domain walls because it is difficult
distinguish between ‘‘true’’ domains and minority island
generated by thermal fluctuations. This situation emerges
example, in the two-dimensional~2D! Ising model at finite
temperature belowTc @see Fig. 1~a!#.

Recently Derrida@3# proposed a method that allows on
to measure properties related to coarsening in the presen
thermal fluctuations. The main idea of this method lies in
comparision of two identical copies~replicas! A andB of the
same system. Both replicas are submitted to the same
mal noise, i.e., their numerical updates are determined by
same sequence of random numbers. CopyA starts with ran-
dom initial conditions and begins to coarsen whereas copB
starts from a fully magnetized state and therefore rema
ordered as time evolves. The assumption is that all spin fl
occurring in replicaB can be regarded as thermal fluctu
tions. Therefore, when a spin flip occurs simultaneously
both replicas, it can be considered as a thermal fluctuat
otherwise as a fluctuation due to the coarsening process

In Refs.@3,4# this method was used to determine the fra
tion of persistent spins@5# at nonzero temperature as a fun
tion of time. At zero temperature a spin is said to be per
tent up to timet if it never flipped before. In the Ising mode
the fraction of persistent spinsr (t) decays according to a
power law r (t);t2u whereu is an independent exponen
For the 1D Glauber model it was proved thatu53/8 @6#
whereas in higher dimensionsu could only be determined by
numerical simulations@5# and approximation methods@7#.
For T.0, however, the fraction of spins that never flipp
decays exponentially since thermal fluctuations occur ev
where at some finite rate. To overcome this difficulty, D
rida proposed to consider a spin as ‘‘persistent’’ if its te
poral evolution in copiesA andB is fully synchronized up to
571063-651X/98/57~3!/2650~6!/$15.00
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time t. Using this definition of persistence he analyzed t
2D Ising model and observed thatr (t) decays algebraically
for 0<T<Tc and saturates at some finite value forT.Tc .
Below the critical temperature the exponentu seems to be
the same as forT50 while atT5Tc a different exponent is
observed.

An imperfection of the method developed by Derrida
that only one type of domain can be identified, namely, th
that are magnetized in the same way as systemB. Therefore
different spin flips inA and B indicate the presence of op
positely magnetized domains rather than the presence
domain wall. This means that persistent spins can be ide
fied only in those domains which have the same orienta
as copyA. For the same reason, the method cannot be u
to analyze other properties such as, for example, the dyn
ics of domain walls.

In the present work we extend Derrida’s method in a w
that domain walls can be identified. For this purpose
considerthree replicasA,B,C instead of two. As before, al
replicas are submitted to the same realization of noise. R
lica A starts with random initial conditions and serves as
master copy in which the coarsening process takes place.
temporal evolution of replicaA is compared with that of
replicasB andC, which start from fully ordered initial con-
ditions with positive and negative magnetization, resp
tively. As in the original setup, domains with positive ma

FIG. 1. The 2D Ising model evolving by heat bath dynamics.~a!
Snapshot of a system with 2503250 sites and periodic boundar
conditions at temperatureT50.9Tc after 500 updates.~b! Corre-
sponding domain walls detected by the observableD i defined in Eq.
~7!. The arrows point at missing links of the contours.
2650 © 1998 The American Physical Society
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57 2651IDENTIFICATION OF DOMAIN WALLS IN . . .
netization in copyA exhibit the same thermal fluctuations
copy B. Likewise, thermal fluctuations in domains wit
negative magnetization in copyA are synchronized with
those in copyC. Along the domain walls, however, fluctua
tions in replicaA may occur that are different from those
B as well as inC. Detecting such fluctuations by an appr
priate observable~to be defined below! we are able to iden-
tify domain walls in a coarsening process at nonzero te
perature. The remarkable efficiency of this method
illustrated in Fig. 1~b!. In addition, our technique allows on
to measure interesting physical quantities such as, for
ample, the surface area of domains as a function of time
what follows we restrict ourselves to the 2D Ising mod
evolving by HBD and GD. However, the technique can e
ily be generalized and may be applied to many other stoc
tic coarsening processes. For example, applying the me
to the Potts model withq.2 states per site requires intro
ducingq11 different replicas.

A fundamental problem of numerical methods based
several replicas evolving under the same noise is that
results may depend on the algorithmic implementation. T
was first observed in so-called damage spreading~DS! prob-
lems. In DS simulations@8# two replicas of a nonequilibrium
system, submitted to the same thermal noise, are started
slightly different initial conditions. If the difference betwee
the two copies~the damage! stays finite or even diverges, th
system is said to exhibit damage spreading. Otherwise, if
two replicas merge into a fully synchronized evolution, da
age is said to heal. Initially DS fascinated researchers, s
it would have indicated the existence of different dynami
phases in stochastic models analogous to chaotic and re
phases in deterministic systems. However, later it was r
ized @9# that such DS phases are ambiguous since the u
of different but equivalent algorithms for the same dynam
cal system can lead to different DS phase structures@10#. For
example, in the Ising model with HBD damage always he
while in the case of GD damage may spread@11#. The reason
is that GD and HBD, although indistinguishable on a sin
replica, are characterized by different correlations when
or more replicas are simulated using the same random n
bers@12#. As we are going to demonstrate, a similar algori
mic dependence appears in the present numerical techn
where several replicas submitted to the same noise are
to analyze coarsening processes. Thus we have to veri
what extent the results obtained by Derrida@3# in the case of
HBD are physically relevant or rather artifacts of differe
algorithmic schemes.@According to the usual terminolog
the dynamical rule used by Derrida in Ref.@3# is denoted as
heat bath~spin orienting! dynamics rather than Glauber~spin
flip! dynamics.#

The article is organized in the following way. In Sec.
we define HBD and GD as well as an observable by wh
domain walls can be detected. Our numerical results
HBD are presented in Sec. III. By comparing results
HBD and GD, we address the problem of algorithmic ind
pendence in Sec. IV. Finally our results are summarized
discussed in Sec. V.

II. DETECTION OF DOMAIN WALLS
IN THE ISING MODEL

The Ising model evolving by HBD or GD is defined a
follows. Consider ad-dimensional square lattice with spin
-
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s i(t)561. The energy at timet is given by

H52(
i

hi~ t !s i~ t !, hi~ t !5(
j

s j~ t !, ~1!

where j runs over the nearest neighbors of sitei . The local
field hi(t) determines the transition probabilitypi(t) for the
spin s i at time t:

pi~ t !5
ehi ~ t !/kBT

ehi ~ t !/kBT1e2hi ~ t !/kBT
. ~2!

HBD and GD differ in their update rules: In HBD the spins i
is orientedaccording to the local fieldhi(t) by

s i~ t11!5sgn@pi~ t !2zi~ t !#, ~3!

wherezi(t) are independent random numbers drawn from
uniform distribution between 0 and 1. On the other hand
GD the spins i is flippeddepending on its previous orienta
tion:

s i~ t11!5H s i~ t !sgn@pi~ t !2zi~ t !# if s i~ t !511

s i~ t !sgn@12pi~ t !2zi~ t !# if s i~ t !521.
~4!

One can easily verify that in both dynamics the probability
gets i(t11)511 is the same, as expected from the equiv
lence between HBD and GD.

Let us now consider three replicasA, B, andC and denote
their spins bys i

A(t), s i
B(t), ands i

C(t). As stated before, the
initial conditions are

s i
A~0!5sgn@ 1

2 2zi
~0!#, s i

B~0!511, s i
C~0!521,

~5!

wherezi
(0) are random numbers between 0 and 1. The th

replicas evolve under the same realization of noise, i.e.,
same random numberszi(t) are used for the updates o
s i

A(t), s i
B(t), ands i

C(t).
We now turn to the observables we want to analyze. D

rida’s definition for the fraction of persistent spinsr (t) can
be generalized easily: A spins i

A(t) is said to be ‘‘persistent’’
up to time t if it experienced exclusivelythermal fluctua-
tions, which means that it was synchronized either w
s i

B(t) or with s i
C(t) for the whole time, i.e.,

r ~ t !5
1

N (
i 51

N S )
0<t8<t

11s i
A~ t !s i

B~ t !

2

1 )
0<t8<t

11s i
A~ t !s i

C~ t !

2 D , ~6!

whereN is the total number of sites. We will analyze th
quantity numerically in Secs. III–IV.

In order to identify domain walls, we define an observab
D i(t) that compares replicasA, B, and C at site i and its
nearest neighbors. We consider sitei as belonging to a do-
main wall @i.e., D i(t)51# if ~a! site i or at least one of its
nearest neighbors in copiesA and B are in different states
and ~b! if site i or at least one of its nearest neighbors
copiesA and C are in different states. Since HBD and G
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FIG. 2. Heat bath dynamics. Measurement
the fraction of persistent spinsr (t) at various
temperatures as a function of time~cf. Ref. @3#!.
The bold line indicates the slope20.22. The
right hand graph shows a data collapse of t
rescaled quantityr (t)/ez in the supercritical re-
gime T.Tc .
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evolve independently on two~even and odd! sublattices, we
assume that these nearest neighbors belong to the same
lattice @for example, ifi 5(x,y), the nearest neighbors on th
same sublattice are (x62,y) and (x,y62)#. Formally the
observableD i(t) is defined by

D i~ t !5S 12)
j

11s j
A~ t !s j

B~ t !

2 D S 12)
j

11s j
A~ t !s j

C~ t !

2 D ,

~7!

wherej runs over sitei and its nearest neighbors on the sa
sublattice. It turns out that this observable allows one
identify domain walls, as illustrated for HBD in Fig. 1~b!.

The definition~7! appears to be quite complicated since
involves the nearest neighbors of sitei . It would have been
more natural to define a local observabled i(t), which is 1 if
s i

A is different from s i
B and s i

C ~indicating a fluctuation
generated by the coarsening process! and 0 otherwise:

d i~ t !5S 12s i
A~ t !s i

B~ t !

2 D S 12s i
A~ t !s i

C~ t !

2 D . ~8!

But, using the initial conditions specified in Eq.~5!, it would
turn out thatd i(t)[0 for all t and for both HBD and GD.
This is due to an overlap of the regions inA that are syn-
chronized with eitherB or C. For HBD this can be proven a
follows. Assume that the three replicas at timet are in a state
where the inequality

pi
C~ t !<pi

A~ t !<pi
B~ t ! ~9!

holds for all i . Since the number of positive spins genera
by the update rule~3! for a given random numberzi(t) is
monotonically increasing withpi(t), one can show tha
hi

C(t11)<hi
A(t11)<hi

B(t11). Therefore the inequality
~9! is also satisfied at the next time stept11. Since this
inequality is satisfied by the initial conditions~5!, it holds by
induction at any time. This implies that events withs i

A

ub-

e
o

t

d

Þsi
C ands i

AÞs i
B do not occur, henced i(t)[0 for HBD. In

the case of GD the proof is trivial: Since replicasB and C
evolve precisely in opposite states@s i

B(t)52s i
C(t)#, the ob-

servabled i(t) vanishes automatically. Thus the local obse
able defined in Eq.~8! cannot be used in order to dete
domain walls. This is the reason we use the more com
cated definition of Eq.~7!.

III. HEAT BATH DYNAMICS: PERSISTENT SPINS AND
THE FRACTAL DIMENSION OF DOMAIN WALLS

In this section we present numerical results for the
Ising model with HBD. We simulate three replicas of a sy
tem of size 100031000 with periodic boundary conditions
Starting with the initial conditions~5! we measure the frac
tion of persistent spinsr (t) as defined in Eq.~6! and the
average Peierls length~circumference! of the domains

D~ t !5
1

N(
i

D i~ t !. ~10!

The quantitiesr (t) andD(t) are measured up to 5000 tim
steps and averaged over 10 independent runs. Our simula
data are shown in Figs. 2 and 3.

The results for the fraction of persistent spinsr (t) ~see
left hand graph in Fig. 2! are in full agreement with Ref.@3#.
For T50 we observe an algebraic decayr (t);t2u with u
50.2360.03. For 0<T,Tc r (t) decreases rapidly on sho
time ranges while for longer times it crosses over to
T-independent power law decay. Precisely at the critical te
perature, however,r (t) seems to vanish liker (t);t2uc with
a different exponentuc.1 ~the physical relevance of thi
exponent will be discussed in the Sec. IV!. Finally, for T
.Tc , r (t) saturates at some finite value. This can be
plained as follows. ForT.Tc the total magnetization in cop
ies B and C decays exponentially. It has been shown@11#
that under these conditions any difference between two
licas evolving by HBD vanishes exponentially, i.e., dama
of

i-
e
led
FIG. 3. Heat bath dynamics. Measurement
the total Peierls lengthD(t) at various tempera-
tures as a function of time. The bold line ind
cates slope20.5. The right hand graph shows th
corresponding data collapse of the resca
Peierls lengthD(t)/e in the supercritical regime.
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57 2653IDENTIFICATION OF DOMAIN WALLS IN . . .
heals spontaneously. This means that the replicasA,B,C
converge and eventually merge into a fully synchroniz
evolution within finite time and consequently a finite fractio
of persistent spins survives. Notice that in the limitT→` all
replicas are already synchronized after a single time step.
finite temperatures we observe a scaling behavior~see right
hand graph in Fig. 2!

r ~ t !;~T2Tc!
zf „t~T2Tc!

z
… ~T.Tc!, ~11!

wherez.2.125 is thedynamical critical exponent of HBD
and f (x) is a scaling function that behaves asf (x);1/x for
x→0 and saturates forx→`.

The results for the total Peierls length of the doma
D(t) illustrated in Fig. 3 indicate a power law behavi
D(t)5t2k with k.0.5 in the regime 0<T,Tc and an ex-
ponential decay in the disordered phaseT.Tc ~to determine
the behavior atT5Tc more numerical effort would be
needed, cf. Ref.@16#! that can be explained by the synchr
nization of the copies within finite time. The correspondi
scaling behavior reads

D~ t !;~T2Tc!
kzg„t~T2Tc!

z
… ~T.Tc!, ~12!

whereg(x) is a scaling function as shown in the right ha
graph in Fig. 3.

The exponentk.1/2 in the subcritical regime may b
interpreted as follows. The total number of domainsn(t) in a
large but finite sized system decreases asn(t);t2d/2. More-
over, the average size of the domainsj grows with time as
j;t1/2. Hence in the 2D Ising model the Peierls length b
haves as

n~ t !j;D~ t !;t21/2. ~13!

This result suggests that surfaces of domains in a coarse
Ising model areregular, i.e., they do not have a fractal stru
ture at finite temperaturesT<Tc . This result can be ex
plained as follows. The coarsening process is driven by
tendency of the system to minimize its energyH, i.e., to
minimize the surface area@the Peierls lengthD(t)# of the
domains. This makes it highly unlikely for the domain wa
to form fractal structures. This mechanism works not only
zero temperature but prevails in the entire subcritical regi
To support this argument we plotted the energyH against the

FIG. 4. Total energyH(t) of a coarsening Ising model as
function of the Peierls lengthD(t) for various temperatures.
d
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Peierls length in Fig. 4. ForT,Tc the curves are monotoni
cally decreasing with time and seem to have a well defin
minimum at D50. This suggests that the mechanism f
coarsening, apart from different time scales, is the sam
the whole subcritical regime. In the disordered phase, h
ever, the curves have a flat shape close toD50 and therefore
the dynamics ofD(t) is no longer driven by the minimiza
tion of energy.

IV. THE PROBLEM OF ALGORITHMIC DEPENDENCE

As outlined in the Introduction, any numerical techniq
based on several replicas of a nonequilibrium system ev
ing under the same realization of noise may depend i
crucial way on the algorithmic implementation of the d
namics. We now discuss this dependence in the present p
lem by comparing HBD and GD.

HBD and GD are two different but equally legitimate a
gorithmic implementations of thesamenonequilibrium pro-
cess that mimics the evolution of an Ising model in cont
with a thermal reservoir. To understand this, it may be he
ful to rewrite the update rule for GD~4! as

s i~ t11!5H sgn@pi~ t !2zi~ t !# if s i~ t !511

sgn@pi~ t !2$12zi~ t !%# if s i~ t !521.
~14!

This rule differs from HBD only inasmuch as—dependin
on s i(t)—the random numberzi(t) or 12zi(t) is used.
Since in a simulation of a single replica each random num
is used only once, it makes no difference whetherzi(t) or
12zi(t) enters the update rule and therefore both dynam
procedures are fully equivalent. In other words, looking
the space-time trajectory of asingleIsing model, one canno
distinguish whether it was generated by HBD or GD. Ho
ever, if we consider more than one replica evolving under
same noise, each random numberzi(t) is used several times
leading to different correlationsbetweenthe replicas depend
ing on whether HBD or GD are used.

HBD and GD are two members of an infinite family o
equivalent dynamical rules@13,12#. All these rules are
equally legitimate and there is no reason to prefer particu
rules such as HBD or GD.Physical properties, however
should not depend on the choice of the dynamical proced
Thus, in order to prove the algorithmic independence o

FIG. 5. The 2D Ising model evolving by Glauber dynamics.~a!
Snapshot of a system with 2503250 sites and periodic boundar
conditions at temperatureT50.9Tc after 500 time steps.~b! Corre-
sponding domain walls detected by the observableD i . Notice that
all contours are strictly closed.
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FIG. 6. Glauber dynamics. Measurement
the fraction of persistent spinsr (t) and the total
Peierls length of domain wallsD(t) as a function
of time.
p
ct
a

f t
h

th
o

n
t
th
so

he
ca
l-

an
lls
n

x-

tly
D
r

ov

n
e
-

.

a
m

ar
nd

is
in

nt

is

de-

for
an-
ain
wer

g
ctal

v-
nu-

the
el.

that

the
an

he
the
fact
rti-
ain
s

a
is-

a-
an
od
ng
not
ith
the
It
ine

, C.
ing
us
specific result, one would have to verify all these rules se
rately. Since this is practically impossible, we will restri
ourselves to the example of HBD and GD. We will show th
some of the previous results are affected by a change o
procedure and hence are physically irrelevant whereas ot
are not.

We now repeat the numerical simulations described in
previous section using GD instead of HBD. A snapshot
the simulation is shown in Fig. 5. Comparing Figs. 1~b! and
5~b! we notice that the HBD algorithm yields very clea
shapes for the Peierls contours while GD produces a lo
additional fluctuations. On the other hand the contours in
Glauber case are strictly closed because of symmetry rea
whereas for HBD there are missing links@two of them are
marked by arrows in Fig. 1~b!#.

We would like to note that any dynamical rule used in t
present problem should synchronize the evolution of repli
A,B or A,C in the interior of large domains. In the termino
ogy of DS this means that damage has to heal. As HBD
the most correlated algorithm, damage heals very rapidly
thus yields high resolution in the determination of the wa
On the other hand GD in 2D is known to exhibit a DS tra
sition atT5Ts.0.95Tc @14#. The simulations in Fig. 5~b! at
T50.9Tc take place very close to this transition, which e
plains why the output is rather noisy.

The numerical results for GD and HBD are significan
different ~see Fig. 6!. Only at zero temperature where G
and HBD coincide does one obtain identical results. Fo
,T,Tc the fraction of persistent spinsr (t) exhibits similar
behavior in both cases: It first decays and then crosses
to an algebraic decayr (t);t2u with the sameu.0.2 as in
theT50 case. This suggests that the crossover phenome
is an intrinsic physical property of the 2D Ising model rath
than an algorithmic artifact. At criticality, however, GD in
dicates an algebraic decayr (t);t22. This is clearly different
from the decayr (t);t21 observed in the case of HBD
Therefore one may wonder about the physical meaning
r (t) at criticality. This problem may be circumvented by
systematic study of the crossover time as a function of te
perature.

The results for the total Peierls length of the domains
even more contradictory. While in the HBD case we fou
an algebraic decayD(t);t21/2 for 0<T<Tc , we observe
continuously varying exponents in the case of GD. If th
was true, it would imply that the Peierls length per doma
grows likeD(t)/n(t);jk with some temperature-depende
exponentk.1 indicating a ‘‘fractal’’ structure of the do-
main walls. Indeed, visual inspection of Fig. 5~b! makes it
intuitively clear how such a ‘‘fractal’’ structure emerges. It
a-
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therefore tempting to discard the results for GD and to
clare the smooth lines in Fig. 1~b! as true domain walls.
However, as explained above, we have no justification
doing so. Therefore the method described in this paper c
not be used to determine the fractal dimension of dom
walls on a safe ground. Nevertheless HBD gives us a lo
bound for the exponentk. It is thus very likely, although not
strictly proven, that domain walls in the coarsenin
Ising model at nonzero temperature do not have a fra
structure.

V. CONCLUDING REMARKS

By introducing three replicas of a 2D Ising model evol
ing under the same realization of noise we extend the
merical method proposed by Derrida@3# in a way that do-
main walls can be identified. Using HBD we measured
Peierls length of coarsening domains in the 2D Ising mod
Our simulations confirm previous results and suggest
domain walls in the Ising model atT,Tc are regular; i.e.,
they do not have fractal properties.

A fundamental problem appearing here and related to
use of several replicas is the algorithmic dependence. As
example we compared HBD and GD. It turns out that t
persistence exponent below the critical temperature is
same in both cases, which suggests that this result is in
related to a physical property rather than algorithmic a
facts. On the other hand, the Peierls length of the dom
walls grows differently for HBD and GD, although it seem
that HBD gives the correct result.

In this context we would like to note that very recently
different method for the numerical estimation of the pers
tence exponentu has been proposed@15# where the persis-
tence probability is defined in terms of spin blocks. By an
lyzing the scaling behavior for different block sizes one c
determineu even at finite temperature. Although this meth
cannot be used to identify domain walls, it is very interesti
since it uses only a single replica wherefore the results do
depend on whether HBD or GD is used. In agreement w
Ref. @3# and the present work the authors observe that
exponentu is the same in the entire subcritical regime.
would be interesting to use this method in order to determ
u at criticality @16#.
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