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Identification of domain walls in coarsening systems at finite temperature
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Recently B. DerriddPhys. Rev. E55, 3705(1997)] introduced a numerical technique that allows one to
measure the fraction of persistent spins in a coarsening nonequilibrium system at finite temperature. In the
present work we extend this method in a way that domain walls can be clearly identified. To this end we
consider three replicas instead of two. As an application we measure the surface area of coarsening domains in
the two-dimensional Ising model at finite temperature. We also discuss the question of to what extent the
results depend on the algorithmic implementati®1063-651X98)06403-4

PACS numbsgs): 05.50+q, 75.10—b, 75.60.Ch, 05.70.Ln

I. INTRODUCTION time t. Using this definition of persistence he analyzed the
2D Ising model and observed thatt) decays algebraically
Dynamical systems quenched from a disordered into afor 0<T=<T, and saturates at some finite value TorT..
ordered phase may display interesting coarsening phenonBelow the critical temperature the exponghseems to be
ena[l]. A simple example is the Ising model evolving by the same as fof =0 while atT=T, a different exponent is
heat bat(HBD) or Glauber dynamicéGD). In the ordering  gpserved.
phase of this model, starting with random initial conditions,  an imperfection of the method developed by Derrida is
patterns of ferromagnetic domains are formed whose typicahat only one type of domain can be identified, namely, those
size grows with time as*2. For zero temperature, these do- that are magnetized in the same way as sys8effherefore
mains are fully ordered and the domain walls evolving in ifferent spin flips inA and B indicate the presence of op-
“”?e can be identified as bonds between Oppos.“‘?'y Orientegositely magnetized domains rather than the presence of a
3'0']{‘3 [23' FOT nonzgrg tem_peratlljlre,b hOWG"eT' .'t ';.f?ar? todomain wall. This means that persistent spins can be identi-
efine domains and domain walls because It s difficult tage only in those domains which have the same orientation

et el oo T oo s 5 CODY. Fr R Same eason e metho canno b used
9 oy . : : . rges, 1qG analyze other properties such as, for example, the dynam-
example, in the two-dimension&2D) Ising model at finite . -

; ics of domain walls.
temperature below [see Fig. 1a)].

. In the present work we extend Derrida’s method in a way
Recently Derridg 3] proposed a method that allows one that domain walls can be identified. For this purpose we

to measure properties related to coarsening in the presence ; : .
thermal fluctuations. The main idea of this method lies in theé) nsiderthreereplicasA, B, C instead of two. As before, all

- ; i . . replicas are submitted to the same realization of noise. Rep-
comparision of two identical copidseplicas A andB of the lica A starts with random initial conditions and serves as the

same system. Both replicas are submitted to the same th jaster copy in which the coarsening process takes place. The

mal noise, i.e., their numerical updates are determ_ined by tht%mporal evolution of replica\ is compared with that of
same sequence of random numbers. CAgiarts with ran- replicasB andC, which start from fully ordered initial con-

dom initial conditions and begins to coarsen whereas &py ditions with positive and negative magnetization, respec-

starts from a fully magnetized state e_md _therefore re.ma.'nﬁvely. As in the original setup, domains with positive mag-
ordered as time evolves. The assumption is that all spin flips

occurring in replicaB can be regarded as thermal fluctua-

tions. Therefore, when a spin flip occurs simultaneously in g L~ NIl
both replicas, it can be considered as a thermal fluctuation| g% ‘\\“0 5‘\/’\ ?5:;
otherwise as a fluctuation due to the coarsening process. ,,3»4\3 63

In Refs.[3,4] this method was used to determine the frac- L{:rf
tion of persistent sping5] at nonzero temperature as a func- s, .
tion of time. At zero temperature a spin is said to be persis-| .y ™
tent up to timet if it never flipped before. In the Ising model i/ ot [\
the fraction of persistent spingt) decays according to a (‘Q% 4
power lawr (t)~t~? where @ is an independent exponent. Nj i &
For the 1D Glauber model it was proved thét 3/8 [6] :“M‘{;?"‘}
whereas in higher dimensiomscould only be determined by @ ®)

numerical simulationg5] and approximation method¥].

For T>0, however, the fraction of spins that never flipped FiG. 1. The 2D Ising model evolving by heat bath dynamies.
decays exponentially since thermal fluctuations occur everysnapshot of a system with 28@50 sites and periodic boundary
where at some finite rate. To overcome this difficulty, Der-conditions at temperatur&=0.9T, after 500 updates(b) Corre-

rida proposed to consider a spin as “persistent” if its tem-sponding domain walls detected by the observabldefined in Eq.
poral evolution in copie# andB is fully synchronized up to (7). The arrows point at missing links of the contours.
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netization in copyA exhibit the same thermal fluctuations as o;(t)=*=1. The energy at timé is given by

copy B. Likewise, thermal fluctuations in domains with

negative magnetization in copf are synchronized with _ _

those in copyC. Along the domain walls, however, fluctua- H= Z hi()ai(v), h‘(t)_; a;(0), @)
tions in replicaA may occur that are different from those in

B as well as inC. Detecting such fluctuations by an appro- wherej runs over the nearest neighbors of sit&he local
priate observabléto be defined beloywe are able to iden- field h;(t) determines the transition probabilipy(t) for the
tify domain walls in a coarsening process at nonzero temspin o; at timet:

perature. The remarkable efficiency of this method is

illustrated in Fig. 1b). In addition, our technique allows one ehi(/kgT

to measure interesting physical quantities such as, for ex- Pi(D) = T o ket 2
ample, the surface area of domains as a function of time. In e te

what .follows we restrict ourselves to the 2D Ising modelHBD and GD differ in their undate rules: In HBD the snir
gvolvmg by HBD and GD. However, the technique can eas;g orientedaccording to the |FC))Ca| fieldh,(t) by pI
ily be generalized and may be applied to many other stochas-

tic coarsening processes. For example, applying the method oi(t+1)=sgipi(t)—z(t)], (3)
to the Potts model witly>2 states per site requires intro-
ducingq-+1 different replicas. wherez;(t) are independent random numbers drawn from a

A fundamental problem of numerical methods based oruniform distribution between 0 and 1. On the other hand, in
several replicas evolving under the same noise is that th&D the sping; is flipped depending on its previous orienta-
results may depend on the algorithmic implementation. Thision:
was first observed in so-called damage spreadi prob-

lems. In DS simulationf8] two replicas of a nonequilibrium (t+1) oi(t)sgrip;i(t) —z(t)] if oi(t)=+1
system, s_ubmltte_d_t_o the same thermal noise, are started from?i o(H)sgil—pi(t)—z(t)] if oi(t)=—1.
slightly different initial conditions. If the difference between (4)

the two copiegthe damagkestays finite or even diverges, the

system is said to exhibit damage spreading. Otherwise, if th©ne can easily verify that in both dynamics the probability to
two replicas merge into a fully synchronized evolution, dam-geto;(t+1)=+1 is the same, as expected from the equiva-
age is said to heal. Initially DS fascinated researchers, sindence between HBD and GD.

it would have indicated the existence of different dynamical Let us now consider three replicAs B, andC and denote
phases in stochastic models analogous to chaotic and reguldueir spins bya{*(t), aiB(t), andaic(t). As stated before, the
phases in deterministic systems. However, later it was reainitial conditions are

ized[9] that such DS phases are ambiguous since the usage

of different but equivalent algorithms for the same dynami- af(0)=sgr[% —zi(o)], aiB(O)= +1, O'iC(O)Z -1,

cal system can lead to different DS phase structit€k For (5)
example, in the Ising model with HBD damage always heals )
while in the case of GD damage may sprgat]. The reason whe_rezi are random numbers betV\_/eer_1 0 and 1 Th_e three
is that GD and HBD, although indistinguishable on a sing|erepllcas evolve under the same realization of noise, i.e., the
replica, are characterized by different correlations when twame raBndom nurgbera(t) are used for the updates of
or more replicas are simulated using the same random nung% (1), o7’ (t), andoy’(t).

bers[12]. As we are going to demonstrate, a similar algorith- We now turn to the observables we want to analyze. Der-
mic dependence appears in the present numerical technigtifla’s definition for the fraction of persistent spinft) can
where several replicas submitted to the same noise are usbg generalized easily: A spir{'(t) is said to be “persistent”

to analyze coarsening processes. Thus we have to verify tap to timet if it experienced exclusivelyhermal fluctua-
what extent the results obtained by Derr|@in the case of tions, which means that it was synchronized either with
HBD are physically relevant or rather artifacts of different oiB(t) or with oic(t) for the whole time, i.e.,

algorithmic schemeq.According to the usual terminology N A B

the dynamical rule used by Derrida in RE3] is denoted as 1 S 1+oi(t)oi(t)

heat bath(spin orienting dynamics rather than Glaubg&pin r(t)= N 2

flip) dynamics]

=1

o=<t's<t

The article is organized in the following way. In Sec. Il 1+ a'iA(t)a'iC(t)
we define HBD and GD as well as an observable by which + H — | (6)
domain walls can be detected. Our numerical results for Ost'<t
HBD are presented in Sec. lll. By comparing results for, here N js the total number of sites. We will analyze this

HBD and GD, we address the problem of algorithmic inde- u
pendence in Sec. IV. Finally our results are summarized ang
discussed in Sec. V.

antity numerically in Secs. IlI-IV.
In order to identify domain walls, we define an observable
A;(t) that compares replica&, B, andC at sitei and its
Il. DETECTION OF DOMAIN WALLS nea_lrest ne!ghbors. We cpn5|der 3|.tas belonging to a o!o-
IN THE ISING MODEL main wall[i.e., A;(t)=1] if (a) sitei or at least one of its
nearest neighbors in copidsandB are in different states,
The Ising model evolving by HBD or GD is defined as and (b) if site i or at least one of its nearest neighbors in
follows. Consider al-dimensional square lattice with spins copiesA andC are in different states. Since HBD and GD
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10
r(t)

' FIG. 2. Heat bath dynamics. Measurement of
the fraction of persistent sping(t) at various
temperatures as a function of tintef. Ref.[3]).
The bold line indicates the slope 0.22. The
right hand graph shows a data collapse of the
rescaled quantity (t)/€* in the supercritical re-
gimeT>T,.

evolve independently on twgeven and oddsublattices, we  #¢* ando?*+ o} do not occur, hencé;(t)=0 for HBD. In
assume that these nearest neighbors belong to the same st case of GD the proof is trivial: Since replicBsand C
lattice[for example, ifi =(Xx,y), the nearest neighbors on the eyolve precisely in opposite stat[es?(t) =_ gic(t)], the ob-
same sublattice arex¢-2y) and (,y*=2)]. Formally the  servables;(t) vanishes automatically. Thus the local observ-

observableA;(t) is defined by able defined in Eq(8) cannot be used in order to detect
A B A C domain walls. This is the reason we use the more compli-
A= 1_H 1+0j (Zt)"j (t)><1_H 1+0] (Zt)"i (1) , cated definition of Eq(7).
J J
(7) IIl. HEAT BATH DYNAMICS: PERSISTENT SPINS AND

. . . . THE FRACTAL DIMENSION OF DOMAIN WALLS
wherej runs over sité and its nearest neighbors on the same

sublattice. It turns out that this observable allows one to In this section we present numerical results for the 2D
identify domain walls, as illustrated for HBD in Fig(d). Ising model with HBD. We simulate three replicas of a sys-

The definition(7) appears to be quite complicated since ittem of size 100& 1000 with periodic boundary conditions.
involves the nearest neighbors of sitdt would have been Starting with the initial conditiong5) we measure the frac-
more natural to define a local observablét), which is 1 if  tion of persistent spins(t) as defined in Eq(6) and the
ol is different from o? and of (indicating a fluctuation —average Peierls lengfitircumferencg of the domains

generated by the coarsening progemsd 0 otherwise: 1
A =H2 A (10

1- oﬁ(t)a?<t>) ( 1-af(t)o(t)

5i(t)=< 5 5 ) (8
The quantities (t) and A(t) are measured up to 5000 time
But, using the initial conditions specified in E@), it would ~ Steps and averaged over 10 independent runs. Our simulation
turn out thats;(t)=0 for all t and for both HBD and GD. data are shown in Figs. 2 and 3.
This is due to an overlap of the regions Anthat are syn- The results for the fraction of persistent spir(¢) (see
chronized with eitheB or C. For HBD this can be proven as 'eft hand graph in Fig. Rare in full agreement with Ref3].
follows. Assume that the three replicas at titrare in a state FOr T=0 we observe an algebraic decaft)~t~’ with ¢

where the inequality =0.23+0.03. For B=T<T, r(t) decreases rapidly on short
time ranges while for longer times it crosses over to a
pic(t)< piA(t) < piB(t) 9 T-independent power law decay. Precisely at the critical tem-

perature, however,(t) seems to vanish like(t)~t~c with
holds for alli. Since the number of positive spins generatedy different exponen®.=1 (the physical relevance of this
by the update rulé3) for a given random numbez(t) is  exponent will be discussed in the Sec.)I\Finally, for T
monotonically increasing withp;(t), one can show that >T_, r(t) saturates at some finite value. This can be ex-
ho(t+1)<hf(t+1)<h?(t+1). Therefore the inequality plained as follows. Fof > T, the total magnetization in cop-
(9) is also satisfied at the next time step 1. Since this jes B and C decays exponentially. It has been shofr]
inequality is satisfied by the initial conditiorts), it holds by  that under these conditions any difference between two rep-
induction at any time. This implies that events Wit:l‘]A licas evolving by HBD vanishes exponentially, i.e., damage

2

1 AL | T T T ""“‘: 10
a) T=0 ]
A(t) b) T=T/3 TA(t) €**
o e ] o FIG. 3. Heat bath dynamics. Measurement of
& T=T, | the total Peierls lengtih (t) at various tempera-
0.1 - E tures as a function of time. The bold line indi-
] 10° | cates slope-0.5. The right hand graph shows the
4] corresponding data collapse of the rescaled
I Peierls lengthA (t)/ e in the supercritical regime.
. 1 Il 1 1 o L
00 5 10’ 10° 10° 10 %10 107
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10 ' ‘ ‘ Peierls length in Fig. 4. FOF<T, the curves are monotoni-
cally decreasing with time and seem to have a well defined
0.8 minimum at A=0. This suggests that the mechanism for

%/ coarsening, apart from different time scales, is the same in
0sl / ‘,’Hlmo | the whole subcritical regime. In the disordered phase, how-
' ever, the curves have a flat shape clos& t00 and therefore

=T the dynamics ofA(t) is no longer driven by the minimiza-
1 tion of energy.

H(t)

04 -

02 IV. THE PROBLEM OF ALGORITHMIC DEPENDENCE

As outlined in the Introduction, any numerical technique
0.0, 02 0% 08 o8 _based on several repIicas_ of a nonequ.ilibrium system e\{olv—
A ing under the same realization of noise may depend in a

i _ crucial way on the algorithmic implementation of the dy-
FIG. 4. Total energyH(t) of a coarsening Ising model as a namjcs. We now discuss this dependence in the present prob-

function of the Peierls lengthA(t) for various temperatures. lem by comparing HBD and GD.
) ) HBD and GD are two different but equally legitimate al-
heals spontaneously. This means that the replids, C orithmic implementations of theamenonequilibrium pro-

converge and eventually merge into a fully synchronized,egg that mimics the evolution of an Ising model in contact
evolution within finite time and consequently a finite fraction \\itn a thermal reservoir. To understand this. it may be help-
of persistent spins survives. Notice that in the lifit-c all ¢ 1o rewrite the update rule for GD4) as '

replicas are already synchronized after a single time step. For

finite temper_atur.es we observe a scaling behafgee right B sgrip;i(t)—z(t)] if o(t)=+1
hand graph in Fig. 2 D sotp 0 —11-20) it oi=-1.
F(O=(T-TOHFAT-ToD (T>T, (1Y 19

This rule differs from HBD only inasmuch as—depending
wherez=2.125 is thedynamical critical exponent of HBD on o;(t)—the random numbeg;(t) or 1—z(t) is used.
andf(x) is a scaling function that behaves &%)~ 1/x for ~ Since in a simulation of a single replica each random number
x—0 and saturates for— . is used only once, it makes no difference whethét) or

The results for the total Peierls length of the domainsl—z(t) enters the update rule and therefore both dynamical
A(t) illustrated in Fig. 3 indicate a power law behavior procedures are fully equivalent. In other words, looking at
A(t)=t""* with k=0.5 in the regime &T<T, and an ex- the space-time trajectory ofsanglelsing model, one cannot
ponential decay in the disordered phdseT, (to determine  distinguish whether it was generated by HBD or GD. How-
the behavior atT=T, more numerical effort would be ever, if we consider more than one replica evolving under the
needed, cf. Ref.16]) that can be explained by the synchro- same noise, each random numbgt) is used several times
nization of the copies within finite time. The correspondingleading to different correlatiorisetweerthe replicas depend-
scaling behavior reads ing on whether HBD or GD are used.

HBD and GD are two members of an infinite family of
A~(T-T)gt(T-Tc)?) (T>To), (12  equivalent dynamical rule$13,12. All these rules are
equally legitimate and there is no reason to prefer particular
whereg(x) is a scaling function as shown in the right hand ryles such as HBD or GDPhysical properties, however,
graph in Fig. 3. should not depend on the choice of the dynamical procedure.

The exponentk=1/2 in the subcritical regime may be Thus, in order to prove the algorithmic independence of a
interpreted as follows. The total number of domaiift) in a

large but finite sized system decreases@$~t~ %2 More-
over, the average size of the domathgrows with time as
é~tY2 Hence in the 2D Ising model the Peierls length be

haves as '

n(t)é~A(t)~t %2 (13

This result suggests that surfaces of domains in a coarseni
Ising model argegular, i.e., they do not have a fractal struc- |
ture at finite temperature$<T.. This result can be ex- .
plained as follows. The coarsening process is driven by the
tendency of the system to minimize its energy i.e., to @

minimize the surface arefthe Peierls length\(t)] of the FIG. 5. The 2D Ising model evolving by Glauber dynamis.
domains. This makes it highly unlikely for the domain walls snapshot of a system with 28@50 sites and periodic boundary
to form fractal structures. This mechanism works not only atconditions at temperature=0.9T,, after 500 time stepgb) Corre-

zero temperature but prevails in the entire subcritical regimesponding domain walls detected by the observahle Notice that
To support this argument we plotted the endrgggainst the  all contours are strictly closed.
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At)

o T=0 a FIG. 6. Glauber dynamics. Measurement of

b) T-T/3 the fraction of persistent spingt) and the total
;; E}J’Z ¢ Peierls length of domain wall&(t) as a function
& T=T, b of time.
) T=41/3 a

0.01 G-y e gy

specific result, one would have to verify all these rules sepatherefore tempting to discard the results for GD and to de-
rately. Since this is practically impossible, we will restrict clare the smooth lines in Fig.() as true domain walls.
ourselves to the example of HBD and GD. We will show thatHowever, as explained above, we have no justification for
some of the previous results are affected by a change of tHéoing so. Therefore the method described in this paper can-
procedure and hence are physically irrelevant whereas othef9t be used to determine the fractal dimension of domain
are not. walls on a safe ground. Nevertheless HBD gives us a lower
We now repeat the numerical simulations described in th&ound for the exponen. It is thus very likely, although not
previous section using GD instead of HBD. A snapshot ofStiCtly proven, that domain walls in the coarsening
the simulation is shown in Fig. 5. Comparing Fig&b)land Ising model at nonzero temperature do not have a fractal
5(b) we notice that the HBD algorithm yields very clean structure.
shapes for the Peierls contours while GD produces a lot of
additional fluctuations. On the other hand the contours in the
Glauber case are strictly closed because of symmetry reasons By introducing three replicas of a 2D Ising model evolv-
whereas for HBD there are missing linkisvo of them are ing under the same realization of noise we extend the nu-
marked by arrows in Fig.(b)]. merical method proposed by Derrild] in a way that do-
We would like to note that any dynamical rule used in themain walls can be identified. Using HBD we measured the
present problem should synchronize the evolution of replicaS@ierls length of coarsening domains in the 2D Ising model.
A.B or A,C in the interior of large domains. In the terminol- OUr simulations confirm previous results and suggest that
ogy of DS this means that damage has to heal. As HBD jdomain walls in the Ising model at<T, are regular; i.e.,

; ; do not have fractal properties.
the most correlated algorithm, damage heals very rapidly anH1ey :
thus yields high resolution in the determination of the walls. _ fundamental problem appearing here and related to the

On the other hand GD in 2D is known to exhibit a DS tran- YS€ of several replicas is the algorithmic dependence. As an
sition atT=T.~0.95T, [14]. The simulations in Fig. ®) at example we compared HBD and GD. It turns out that the

a . . . persistence exponent below the critical temperature is the
T__O‘gTC take place very close to_thls transition, which €x-game in both cases, which suggests that this result is in fact
plains why the output is rather noisy.

- L related to a physical property rather than algorithmic arti-
_The numerical results for GD and HBD are significantly facts. On the other hand, the Peierls length of the domain
different (see Fig. 6. Only at zero temperature where GD \yais grows differently for HBD and GD, although it seems
and HBD coincide does one obtain identical results. For Ghat HBD gives the correct result.
<T<T, the fraction of persistent spingt) exhibits similar In this context we would like to note that very recently a
behavior in both cases: It first decays and then crosses oveffferent method for the numerical estimation of the persis-
to an algebraic decay(t)~t~? with the same#=0.2 as in  tence exponend has been proposdd5] where the persis-
the T=0 case. This suggests that the crossover phenomenasnce probability is defined in terms of spin blocks. By ana-
is an intrinsic physical property of the 2D Ising model ratherlyzing the scaling behavior for different block sizes one can
than an algorithmic artifact. At criticality, however, GD in- determinef even at finite temperature. Although this method
dicates an algebraic decaft) ~t~2. This is clearly different cannot be used to identify domain walls, it is very interesting
from the decayr(t)~t ' observed in the case of HBD. since it uses only a single replica wherefore the results do not
Therefore one may wonder about the physical meaning ofiepend on whether HBD or GD is used. In agreement with
r(t) at criticality. This problem may be circumvented by a Ref. [3] and the present work the authors observe that the
systematic study of the crossover time as a function of temexponenté is the same in the entire subcritical regime. It
perature. would be interesting to use this method in order to determine
The results for the total Peierls length of the domains arey at criticality [16].
even more contradictory. While in the HBD case we found
an algebraic decag (t)~t~ 2 for 0<T<T,, we observe
continuously varying exponents in the case of GD. If this
was true, it would imply that the Peierls length per domain
grows like A(t)/n(t)~ &* with some temperature-dependent ~ We thank E. Domany, P. Grassberger, G. Schliecker, C.
exponentx>1 indicating a “fractal” structure of the do- Sire, and D. Stauffer for valuable remarks and interesting
main walls. Indeed, visual inspection of Figbh makes it  discussions. We also thank S. Cueille for pointing out to us
intuitively clear how such a “fractal” structure emerges. It is the correct dynamical exponent in E¢$1) and(12).

V. CONCLUDING REMARKS
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